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Constraints on alternatives to supermassive black holes
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ABSTRACT
Observations of the centres of galaxies continue to evolve, and it is useful to take a fresh look
at the constraints that exist on alternatives to supermassive black holes at their centres. We
discuss constraints complementary to those of Maoz and demonstrate that an extremely wide
range of other possibilities can be excluded. In particular, we present the new argument that for
the velocity dispersions inferred for many galactic nuclei, even binaries made of point masses
cannot stave off core collapse because hard binaries are so tight that they merge via emission
of gravitational radiation before they can engage in three-body or four-body interactions. We
also show that under these conditions core collapse leads inevitably to runaway growth of a
central black hole with a significant fraction of the initial mass, regardless of the masses of
the individual stars. For clusters of non-interacting low-mass objects (from low-mass stars to
elementary particles), the relaxation of stars and compact objects that pass inside the dark
region will be accelerated by interactions with the dark mass. If the dark region is instead a
self-supported object, such as a fermion ball, then if stellar-mass black holes exist they will
collide with the object, settle, and consume it. The net result is that the keyhole through which
alternatives to supermassive black holes must pass is substantially smaller and more contrived
than it was even a few years ago.

Key words: gravitation – black hole physics – Galaxy: centre – Galaxy: nucleus – galaxies:
kinematics and dynamics.

1 I N T RO D U C T I O N

High-resolution observations of the nuclei of many galaxies have
revealed large dark masses in small regions. These are most naturally
interpreted as supermassive black holes, but as emphasized by Maoz
(1998) it is important to take stock of how rigorously we can rule
out other possibilities.

Here we present arguments showing that under extremely general
conditions almost all other options are ruled out, further emphasizing
that supermassive black holes are by far the least exotic and most
reasonable explanations for the data in many specific sources. In
Section 2 we lay out our assumptions, making them as conservative
as possible so that our conclusions are robust. In Section 3 we show
that for many observed galactic nuclei, binaries are unable to heat
the stellar distribution effectively because if they are hard then they
merge quickly via gravitational radiation. This important constraint,
which depends only on dynamics and not the detailed properties of
the specific objects, was not presented by Maoz (1998) or elsewhere
as far as we are aware. In Section 4 we explore the consequences
of core collapse and demonstrate that a very significant mass will
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inevitably coalesce even for point masses. In Section 5 we investi-
gate for the first time the consequences of stellar-mass black holes
existing outside the nucleus. We show that enough of them will find
their way to the centre that they will have serious effects on the
nuclear region, likely consuming a significant amount of mass and
leading to a supermassive black hole. We discuss the consequences
of this analysis in Section 6.

2 A S S U M P T I O N S A N D DY NA M I C S

In the spirit of Maoz (1998), we make a series of conservative as-
sumptions to rule out alternatives to supermassive black holes. Let
us suppose that observations have revealed that a mass M is confined
within a spherically symmetric region whose radius is at most R. We
also assume that this mass is composed of identical point masses m;
the point mass assumption minimizes the interaction between the
masses, and making them identical increases as much as possible
the relaxation time, on which the masses concentrate in the centre
of the distribution and hence increase interaction rates. The local
two-body relaxation time for a mass m in a region of mass density
ρ and velocity dispersion σ is (Spitzer 1987)

trlx ≈ 1

3 ln �

σ 3

G2mρ
(1)
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where ln � ∼ 10 is the Coulomb logarithm. In general this time
depends on radius, but note that if ρ ∼ r−3/2 and the velocity dis-
persion is dominated by a single large mass, the relaxation time is
constant with radius.

Any streaming motion (e.g. rotation) reduces the relative speed
σ and hence reduces the relaxation time (see e.g. Kim, Lee &
Spurzem 2004 for a numerical treatment of a rotating stellar system).
Therefore, completely random motion leads to the largest time-
scales.

For N identical masses in a region whose crossing time is t cross,
the global relaxation time is approximately (Binney & Tremaine
1987)

trlx ≈ 0.14N

ln(0.4N )
tcross

≈ 109 yr M1/2
8 (1 M�/m)(R/1 pc)3/2 (2)

where M = 108 M 8 M�. Both expressions for the relaxation time
show that for fixed mass density, lower-mass objects take longer to
alter their distribution, as is expected because two-body relaxation
occurs due to the graininess of the gravitational potential, which is
less when there are more objects.

The more concentrated the initial density distribution is, the
shorter will be the central relaxation time (see the extensive discus-
sion in Quinlan 1996b). To be conservative, we therefore assume a
relatively flat distribution such as a Plummer sphere, in which ρ ∝
(1 + r2/r 2

c)−5/2, where rc is the core radius. Even for such a distri-
bution, identical point masses will undergo core collapse within a
time (see discussion in Binney & Tremaine 1987)

tcc ≈ 16trlx,h, (3)

where t rlx,h is the relaxation time at the half-mass radius. Note that
this is a factor ∼20 times less than the time needed for the clus-
ter to evaporate (Binney & Tremaine 1987). Core collapse of sin-
gle objects will formally lead to infinite density at the centre. In
globular clusters and similar systems, this is avoided by the inter-
vention of binaries: three-body and four-body scattering can trans-
fer energy from binaries to the stellar velocity dispersion, heating
the cluster and stabilising the density at the centre (see Gao et al.
1991; Fregeau et al. 2003 and Giersz & Spurzem 2000 for clus-
ter simulations involving primordial binaries). As we now show,
however, when the velocity dispersion is high enough (as it is
in many observed galactic nuclei), binaries cannot prevent core
collapse.

3 T H E I N S U F F I C I E N C Y O F B I NA R I E S

As shown first by Heggie (1975), binary–single interactions tend to
harden hard binaries, and soften soft binaries. Only hardening will
inject energy into the cluster and slow core collapse, hence we only
need to consider hard binaries. For equal-mass objects the hard/soft
boundary is approximately where the orbital energy per object is
equal to the kinetic energy of field stars (Quinlan 1996a). Suppose
that the stellar velocity dispersion is v res at the resolution radius r res

for a particular galactic nucleus. Then at the hard/soft boundary the
semimajor axis a is given by

2Gm/a ≈ v2
res. (4)

Any binary emits gravitational radiation as it orbits. If the time for
the binary to merge by gravitational wave emission is less than the
time for the binary to interact with field stars, then the binary does
not heat the cluster. For a fixed semimajor axis, the merger time is

maximized for a circular orbit, so we assume e = 0 to be conser-
vative. For comparison, if e ≈ 0.7 (the mean for a thermal distribu-
tion), the merger time is decreased by a factor ∼10 for fixed a. The
rate of change in the semimajor axis from gravitational radiation,
and corresponding merger time for a circular orbit, is then (Peters
1964)

da/dt = −64

5
G3µm2

bin

/
(c5a3),

τmerge = a/|da/dt | = 5

128
c5a4/(G3m3)

= 5

8
(c/vres)

5
(

Gm/v3
res

) (5)

where m bin = m 1 + m 2 is the total mass of the binary and µ =
m 1m 2/m bin is the reduced mass; in the second line we assume m 1 =
m 2 = m, and in the third line we substitute a = 2Gm/v2

res.
The time-scale for a three-body interaction is τ 3−bod = 1/(n�v),

where n is the number density, v ≈ √
2vres is the relative speed,

and � = πr 2
p[1 + 2G(m bin + m)/(r pv

2
res)] is the interaction cross-

section, where rp is the distance of closest approach. For rp ≈ a
and three equal masses, a binary at the hard/soft boundary has � ≈
4πa2 ≈ 16πG2m2/v4

res. Substituting n = ρ/m, we find

τ3−bod ≈ v3
res/

(
16

√
2πρG2m

)
. (6)

The ratio between the merger and three-body time-scales is then

τmerge/τ3−bod ≈ 44(c/vres)
5G3ρm2/v6

res. (7)

This ratio needs to exceed unity for the typical binary to interact
before it merges. Using the average density ρ ≈ ρ̄ = M/(4πR3/3)
and assuming a roughly constant velocity dispersion v2

res = GM/R,
we find after some manipulation that τ merge/τ 3−bod > 1 implies

m � 1

3
(vres/c)5/2 M

≈ 20 M� v
5/2
res,3 M8, (8)

where v res = 103v res,3 km s−1. A cluster made of any point masses
lighter than this cannot support itself by binary heating.

A loophole might appear to be that when there is bulk rotation
(and hence a reduced velocity dispersion) or a density profile in
which the relative speed at the centre is much less than (GM/R)1/2,
binaries wide enough not to merge quickly could still heat the dis-
tribution. However, suppose that a binary has tightened by inter-
actions to the point that a = 2Gm/v2

res, as considered above. Its
specific binding energy is then Gµ/(2a) = Gm/(4a) = GM/(8R),
because v2

res = GM/R and thus a = 2R(m/M). Even if the cluster is
100 per cent binaries, the total binding energy liberated by hardening
is therefore GM2/(8R). The minimum binding energy of a cluster
with mass M and outer radius R is obtained when all the mass is in
a thin spherical shell at radius R, in which case the binding energy
is GM2/(4R). Even in this case, therefore, the maximum effect of
binaries (prior to their reaching the previously considered semima-
jor axis a = 2Gm/v2

res) is to increase the cluster binding energy, and
hence the cluster radius, by 50 per cent. A smaller binary fraction,
a more concentrated cluster, or non-zero eccentricities for the bina-
ries will all reduce this number. Therefore, if binaries that are hard
relative to v res merge quickly by gravitational radiation, no possible
configuration of velocities or densities can allow binaries to stall
collapse significantly.

Fig. 1 plots the black hole mass versus the stellar velocity at the
resolution radius, along with the minimum mass of point masses
that would allow binary heating. Several galactic nuclei cannot be
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Figure 1. Inferred black hole masses and stellar speeds at resolution radius,
derived from Table II of (Ferrarese & Ford 2005) with updates for M31
(Bender et al. 2005), and the Milky Way (Ghez et al. 2005), which is far
to the right of the diagram at v res = 1.2 × 104 km s−1. The curved lines
are labeled by the minimum mass of identical point masses such that if
they make up the dark mass, binaries can in principle heat the system and
delay core collapse. Several galaxies have M min > 100 M� (the Galaxy has
M min ≈ 400 M�) and hence no reasonable stellar component could heat the
system.

heated by masses lower than 100 M�, including the Galaxy, M87,
M31 and NGC 4258. If such masses were assembled, the number of
objects would therefore be small for a given dark mass, which would
reduce the relaxation time dramatically (see equation 1) and would
mean that the evaporation time t evap ≈ 300 t rlx would be much less
than a Hubble time. Therefore, even with an implausible collection
of >100 M� objects in binaries, the cluster would still disintegrate
rapidly.

4 C O R E C O L L A P S E

If core collapse happens, what is the result? Cohn (1980) found that
the density profile approaches n ∝ r−2.23. For ease of calculation,
and to be conservative, we will assume a shallower profile of n ∝
r−2, which is appropriate for a singular isothermal sphere. In such
a profile, the total mass interior to radius r is proportional to r, and
the velocity dispersion is constant with radius.

In the high-density central regions, even point masses can
merge because they emit gravitational radiation. Quinlan & Shapiro
(1989) showed that for a relative speed v at infinity between
two masses with reduced mass µ and total mass m tot, there will
be a mutual capture if the pericentre distance of approach rp

satisfies

rp < rp,max =
(

85π
√

2

12c5

)2/7

Gµ2/7m5/7
tot v−4/7. (9)

For equal masses and v ≈ √
2vres, the cross-section for merging in

the gravitationally focused limit is

�merge ≈ 2πrp,max

(
Gm tot/v

2
) ≈ 19

(
Gm

c2

)2 (
c

vres

)18/7

. (10)

Over a time T , the probability of merger of an average point
mass is then P = Tn�v res. The average number density is n̄ =
(M/m)/(4πR3/3). At this density, we find after some algebra that
the probability is

P̄ ≈ 4T
m

M

(
vres

c

)10/7
v3

res

G M
. (11)

With the rough approximation that n ≈ n̄(r/R)−2 and M(< r ) ≈
(r/R)M , this implies that the enclosed mass M merge inside of which
the masses merge in time T = 109T 9 Gyr is

Mmerge ≈ P̄1/2 M ≈ 3(c3/G)1/2T 1/2m1/2(vres/c)31/14

≈ 5 × 105 M�T 1/2
9 (m/1 M�)1/2v

31/14
res,3 , (12)

or just M if P̄ > 1. The net result is that even for low-mass objects,
core collapse will lead to the formation of a large single mass at the
centre of the distribution. However, as is clear from equation (1),
if the component masses are small enough then the relaxation time
is so large that core collapse will not occur. We now address this
situation.

5 DY NA M I C A L F R I C T I O N A N D
S T E L L A R - M A S S B L AC K H O L E S

Suppose that the particles comprising the matter are very low-mass
indeed, such as elementary particles. Suppose also that, like hypoth-
esized dark matter, the particles interact neither with themselves nor
with ordinary baryonic matter in any way but gravitationally. If in
some improbable circumstance the particles have collected in a clus-
ter of total mass M and radius R, what will affect them?

Because the particles have low mass, any more massive objects
that enter their region will sink to the centre via dynamical fric-
tion. The characteristic time for a mass m to sink is (see Binney &
Tremaine 1987, for a discussion)

τDF ≈ v3
M

/
[4πξ ln �G2ρm], (13)

where v M is the speed of the massive object, ln � is a Coulomb
logarithm, and

ξ = erf(X ) − 2X√
π

e−X2
(14)

with X ≡ vM/(
√

2σ ). If vM ≈v res, then ξ ≈ 0.2. Adopting as before
v res ≈ (GM/R)1/2 we find

τDF ∼ 0.2(M/m)
(

G M/v3
res

)
≈ 8 × 109 yr M2

8 (1 M�/m)v−3
res,3. (15)

This implies that for systems such as the central region of M31,
where v res ≈ 2000 km s−1 and M > 108 M� (Bender et al. 2005),
even ordinary stars will sink to the centre of the mass distribution
within a few Gyr, or much less if the dark matter is more concen-
trated. Therefore, all ordinary stellar processes that would proceed
around a supermassive black hole will also proceed around a concen-
trated region of non-interacting particles, except that stars inside the
region will sink to the centre rapidly (see Quinlan 1996b). Thus, if
the dynamical friction time at the average density ρ̄ = M/(4πR3/3)
is less than a few Gyr, stars and compact objects that enter the region
will collide, merge, and have prime conditions for forming a large
single mass.

The rate of interactions of stars with the central concentrated
region is less for smaller regions. Suppose that the non-stellar mat-
ter is very concentrated, say with a radius just a few times the
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radius of a black hole with the same mass. Then, the arguments
used to estimate rates of extreme mass ratio inspirals also ap-
ply here. These arguments suggest that stellar-mass black holes
will spiral into supermassive black holes at a rate not less than
∼10−8 yr−1 (Hils & Bender 1995; Sigurdsson & Rees 1997;
Miralda-Escudé & Gould 2000; Freitag 2001, 2003; Ivanov 2002;
Hopman & Alexander 2005). Therefore, regardless of how com-
pactly the dark matter is distributed, if stellar-mass black holes exist
they will enter the mass distribution in much less than a Hubble
time.

The mass accreted by a black hole during inspiral is com-
paratively small. For example, consider a constant-density region
ρ = ρ̄ = M/(4/3πR3) with non-relativistic particles moving at
an average speed v res = (GM/R)1/2 relative to the black hole. The
cross-section for absorption by a black hole of mass m is � =
(4Gm/c2)(2Gm/v2

res), so during a time τ DF the black hole will ac-
crete a mass

�m = ρ�vresτDF

≈ 0.4(vres/c)2m. (16)

This is therefore only a small fraction of the original mass. Similarly,
if after inspiral the black hole is fixed at the centre of the mass
distribution, it accretes little mass.

This conclusion changes if the black hole wanders freely
around the dark matter distribution. This could happen if, for
example, multiple massive objects enter the dark matter region
and scatter each other frequently. In this case, for the same
assumptions as before, the mass accretion rate ṁ = ρ�vres

becomes

ṁ = 2
m2

M2

σ 5

Gc2
, (17)

implying a growth time

Tgrowth = 1

2
(M/m)(G Mc2/σ 5)

≈ 2 × 1014 yr M2
8 (m/10 M�)−1v−5

res,3. (18)

This is not constraining on most supermassive black hole candidates,
but for the Galaxy (M ≈ 4 × 106 M�; Schödel et al. 2003; Ghez
et al. 2005) and v res ≈ 1.2 × 104 km s−1 within 45 au (Ghez et al.
2005), the growth time is Tgrowth ∼ 4 × 105 yr. Radio observations
(Reid & Brunthaler 2004; Shen et al. 2005) suggest that at least 4 ×
105 M� is contained within ∼0.5 au of the position of Sgr A∗, which
lowers the accretion time to at most ∼100 yr. Note that a doubling
of mass decreases the time to the next doubling by a factor of 2,
so substantial growth results in a runaway. Note also that because
(by assumption) the only matter entering the black hole does so
with prompt infall and without release of radiation, the growth is
not limited by the Eddington rate. If the particles are baryonic or
otherwise have a reasonable strength of self-interaction, then the
accretion rate is greatly enhanced, up to a possible Eddington-like
maximum.

Finally, suppose that the non-luminous matter is in fact in the
form of a star supported by pressure gradients rather than by simple
motion as we have assumed up to this point. An example would
be fermion balls (see e.g. Tsiklauri & Viollier 1998), which are
collections of massive neutrinos supported by degeneracy pressure.
In that case, clearly a stellar-mass black hole captured by the star
will consume matter at the star’s centre and remove pressure support,
leading to rapid destruction of the star.

6 C O N C L U S I O N S

In the past decade, thanks to many observational developments, the
case for supermassive black holes in the centres of many galaxies
has gone from strong to essentially inescapable. We have shown that
for many specific galactic nuclei, the observational constraints are
strong enough to rule out binary heating, hence the relevant evolu-
tion time is the time to core collapse. This is a factor of ∼20 less
than the time to evaporation, which has previously been used as the
conservative standard for stellar cluster persistence. For many in-
dividual galactic nuclei, therefore, the combination of time to core
collapse and lack of binary heating rules out dense stellar clus-
ters as an alternate explanation for the inferred dark mass. Specif-
ically, the Galaxy, NGC 4208 and M31 have core collapse times
<2 Gyr for 0.5 M� objects and cannot be stabilized by binaries
less than 100 M�. M32 also has a core collapse time <2 Gyr, but
could in principle be stabilized by stellar-mass binaries. All other
sources currently have core collapse times >200 Gyr for 0.5 M�
objects.

The only remaining possibilities are concentrated regions of non-
interacting low-mass particles or self-supported exotic objects such
as a fermion balls (Tsiklauri & Viollier 1998). Even in this case, we
have shown that dynamical evolution of the stars and black holes
near the centres of galaxies will cause multiple stellar-mass black
holes to fall to the centre of the potential, if black holes exist at all.
Such black holes would consume any high-mass exotic pressure-
supported objects, and would also accrete a non-interacting cluster
of particles if allowed to move around freely. Therefore, the exis-
tence of stellar-mass black holes would lead to the production of
supermassive black holes in many specific sources even if the su-
permassive holes did not form in other ways. When combined with
the high redshifts inferred from Fe Kα lines in some Seyfert galax-
ies (Reynolds & Nowak 2003), dramatic deviations from standard
physics are required to explain observations in ways not involving
black holes.
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Becklin E. E., Duchêne G., 2005, ApJ, 620, 744
Giersz M., Spurzem R., 2000, MNRAS, 317, 581
Heggie D. C., 1975, MNRAS, 173, 729
Hils D., Bender P. L., 1995, ApJ, 445, L7
Hopman C., Alexander T., 2005, ApJ, 629, 362
Ivanov P. B., 2002, MNRAS, 336, 373
Kim E., Lee H. M., Spurzem R., 2004, MNRAS, 351, 220
Maoz E., 1998, ApJ, 494, L181

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 367, L32–L36

 at N
A

SA
 G

oddard Space Flight C
tr on N

ovem
ber 28, 2014

http://m
nrasl.oxfordjournals.org/

D
ow

nloaded from
 

http://mnrasl.oxfordjournals.org/


L36 M. C. Miller
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